Dietary flavonoids reduce lipid peroxidation in rats fed polyunsaturated or monounsaturated fat diets.
نویسندگان
چکیده
We investigated the influence of dietary flavonoids on alpha-tocopherol status and LDL peroxidation in rats fed diets enriched in either polyunsaturated fatty acids (PUFA) or monounsaturated fatty acids (MUFA). Diets equalized for alpha-tocopherol concentrations were or were not supplemented with 8 g/kg diet of flavonoids (quercetin + catechin, 2:1). After 4 wk of feeding, plasma lipid concentrations were lower in rats fed PUFA than in those fed MUFA with a significant correlation between plasma alpha-tocopherol and cholesterol concentrations, r = 0.94, P < 0. 0001). Dietary lipids influenced the fatty acid composition of VLDL + LDL more than that of HDL or microsomes. The resistance of VLDL + LDL to copper-induced oxidation was higher in rats fed MUFA than in those fed PUFA as assessed by the lower production of conjugated dienes and thiobarbituric acid reactive substances (TBARS) and by the >100% longer lag time for dienes production. (P < 0.0001). Dietary flavonoids significantly reduced by 22% the amounts of dienes produced during 12 h of oxidation in rats fed diets rich in PUFA and lengthened lag time 43% in those fed MUFA. Microsomes of rats fed MUFA produced approximately 50% less TBARS than those of rats fed PUFA (P < 0.0001) and they contained more alpha-tocopherol in rats fed MUFA than in those fed PUFA with higher values (P < 0. 0001) in both groups supplemented with flavonoids (P < 0.0001). Our findings suggest that the intake of dietary flavonoids is beneficial not only when diets are rich in PUFA but also when they are rich in MUFA. It seems likely that these substances contribute to the antioxidant defense and reduce the consumption of alpha-tocopherol in both lipoproteins and membranes.
منابع مشابه
Suppression of fatty acid synthase by dietary polyunsaturated fatty acids is mediated by fat itself, not by peroxidative mechanism.
This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla o...
متن کاملThe long-term ingestion of a diet high in extra virgin olive oil produces obesity and insulin resistance but protects endothelial function in rats: a preliminary study
BACKGROUND It has been hypothesized that fatty acids derived from a diet high in saturated fat may negatively affect endothelial function more significantly than a diet high in unsaturated fat; nevertheless, the effects of the long-term ingestion of monounsaturated fatty acids on endothelial function have been poorly studied. METHODS To examine the chronic effects of monounsaturated (e.g., ex...
متن کاملTissue specific interactions of exercise, dietary fatty acids, and vitamin E in lipid peroxidation.
Both physical exercise and ingestion of polyunsaturated fatty acids that play an essential role in free radical-mediated damages cause lipid peroxidation. The intake of specific fatty acids can modulate the membrane susceptibility to lipid peroxidation. Data confirmed that liver, skeletal muscle, and heart have different capabilities to adapt their membrane composition to dietary fatty acids, t...
متن کاملAging-related oxidative stress depends on dietary lipid source in rat postmitotic tissues.
We investigate mitochondrial-lipid peroxidation of mitotic (liver) and postmitotic (heart and skeletal muscle) tissues of rats fed lifelong on two different lipid sources: virgin olive oil (monounsaturated fatty acids) and sunflower oil (n - 6 polyunsaturated fatty acids). Two groups of 80 rats each were fed over 24 months on a diet differing in the lipid source (virgin olive oil or sunflower o...
متن کاملDietary linseed oil produces lower abdominal fat deposition but higher de novo fatty acid synthesis in broiler chickens.
Previous experiments have shown lower abdominal and body fat deposition in broilers fed polyunsaturated fatty acids (PUFA) compared with those fed saturated fatty acids (SFA) or monounsaturated fatty acids (MUFA). These changes in fat deposition may be related to different rates of lipid synthesis or lipid oxidation. In Experiment 1, in vivo lipogenesis of broilers fed different dietary fatty a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of nutrition
دوره 128 9 شماره
صفحات -
تاریخ انتشار 1998